

Produção de Chapas Grossas

Aços Planos Gerdau Chapas Grossas

A Gerdau está sempre atenta às necessidades dos clientes. Em nosso portfólio de produtos de Aços Planos, além das Bobinas Laminadas a Quente, agora fazem parte as Chapas Grossas.

Possuímos equipamentos de alta tecnologia, que produzem chapas com elevado nível de desempenho. As Chapas Grossas Gerdau podem ser aplicadas nos mais diversos setores: construção civil, eólico, óleo & gás, naval, rodoviário, máquinas e equipamentos, entre outros.

Conheça as nossas soluções e como podemos contribuir para o seu negócio.

Aplicações para Oleodutos e Gasodutos

As aplicações típicas para oleodutos e gasodutos necessitam de combinações de resistência e tenacidade para atender às solicitações críticas, tais como: baixas temperaturas, terrenos instáveis e montanhosos, águas profundas e exposição a hidrogênio. Esses aços são destinados à fabricação de tubos de grande diâmetro, equipamentos e estruturas para suportar as atividades deste setor.

Nosso processo conta com moderna tecnologia de resfriamento acelerado, reforçada por um processo termomecânico de laminação controlada.

		CON	MPOSIÇÂ	ÃO QUÍN	IICA (%	6 em	massa)	(1) (2	2) (3)	PROPE	RIEDADE	S MECA	ÂNICAS (1) (4)	IMPACTO CHARPY TRANSVERSAL (1) (4)			
ESPECIFICAÇÃO	GRAU			0:				OF WAY	CED-	LE	LR	LE/LR	Alongamento mín. (%)	Temperatura	Energia Al mín.		
		С	Mn	Si	Р	S	Outros	(7)	(8)	(MPa)	(MPa)		BM = 50 mm	(°C)	Individual	Média	
	L245/B PSL 1		1,20							245 mín.	415 mín.						
	L290/X42 PSL 1		1,30							290 mín.	415 mín.						
	L320/X46 PSL 1									320 mín.	435 mín.						
	L360/X52 PSL 1			NE						360 mín.	460 mín.						
	L390/X56 PSL1	0,26	1,40	NE	0,030			NE		390 mín.	490 mín.	NE					
	L415/X60 PSL1									415 mín.	520 mín.						
	L450/X65 PSL1		1,45							450 mín.	535 mín.						
ISO 3183/API	L485/X70 PSL 1		1,65							485 mín.	570 mín.		(9)	(5)	(5)	(5)	
5L (5)	L245M/BM PSL 2		1,20			5 0,015	(6)			245 - 450	415 - 655	5					
	L290M/X42M PSL 2		1,30							290 - 495	415 - 655						
	L320M/X46M PSL 2	0,22	.,00							320 - 525	435 - 655						
	L360M/X52M PSL 2		1,40							360 - 530							
	L390M/X56M PSL 2		1,40	0,45	0,025			0,43	0,25	390 - 545		máx.					
	L415M/X65M PSL 2		1,60							415 - 565		60 60 60 25 15 0,95 máx.					
L	L450M/X65M PSL 2	0.12								450 - 600							
	L485M/X70M PSL 2	-,	1,70							485 - 635							
	L555M/X80M PSL 2		1,85							555 - 705							
	L625M/X90M PSL 2	0.10	2,10	0.55	0.020	0.010		NE		625 - 775	695 - 915						
	L690M/X100M PSL 2	0,10	2, 10	0,55	0,020	0,010				690 - 840	760 - 990	0,97 máx.					

- (1) Requisitos citados apenas como referência, sem todo o detalhamento contido nas normas. Para mais esclarecimentos, contatar nossa equipe de vendas.
- (2) Teores máximos, exceto quando indicado de modo diferente.
- (3) Elementos adicionados intencionalmente devem ser determinados e reportados.
- (4) Ensaios em corpos de prova com comprimento transversal à direção principal de laminação.
- (5) Requisitos especificados para tubos, citados apenas como referência. Os requisitos para chapas grossas são, usualmente, especificados pelo fabricante dos tubos e variam de projeto para projeto.
- (6) Outros elementos, como Nb, V, Ti, Cu, Cr, Ni, Cr, Mo, Al, N e B, conforme especificação da norma.
- (7) CEIIW = C + Mn/6 + (Mo + Cu + Cr)/5 + (Ni + Cu)/15.
- $(8) \ \mathsf{CEPcm} = \mathsf{C} + \mathsf{Si} / 30 + \mathsf{Mn} / 20 + \mathsf{Cu} / 20 + \mathsf{Ni} / 60 + \mathsf{Cr} / 20 + \mathsf{Mo} / 15 + \mathsf{V} / 10 + \mathsf{5B}.$
- (9) Os limites especificados variam de acordo com a faixa de espessura. Para mais detalhes, consultar a norma.
- (10) A norma apresenta outras opções de temperaturas de teste e valores mínimos de energia absorvida.
- NE = Não especificado.

Aplicações para Construção Naval e Plataformas Marítimas

A construção naval dedica-se à fabricação de embarcações, cascos e módulos de navios. Necessita de aços com alta resistência, tenacidade e soldabilidade. As tecnologias de fabricação, como o resfriamento acelerado de última geração, permitem maximizar o desempenho das chapas grossas, o que resulta em maior produtividade nas suas aplicações.

As Chapas Grossas da Gerdau podem ser qualificadas por entidades classificadoras internacionais, tais como:

- American Bureau of Shipping (ABS) EUA;
- Bureau Veritas (BV) França;
- Det Norske Veritas/Germanischer Lloyd (DNV GL) Noruega/Alemanha;
- Lloyd's Register of Shipping (LR) Inglaterra.

ESPECIFICAÇÃO	CDALL	CO	OMPOSIÇÂ	ÃO Q	UÍMI	CA (%	em mas	ssa) (1) (1	2) (3)			EDADES CAS (1) (8)	IMPACTO CHARPY (1)		
ESPECIFICAÇÃO	GNAU	С	Mn	Si	Р	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	CEIIW (6)	L.E. (MPa)	L.R. (MPa)	Alongamento mín. (%)	Temperatura (° C)	Energia Absorvida (J)			
	Α		2,5 x C mín.	0,50					NE	235 mín.	400 - 520		20		
	В	0,21	0,60 mín.	0,35				0.40					0		
	D		.,					5,					-20	27	
	Ε	0,18	0,70 mín.				5 (5)						-40		
	AH-32		0,70 - 1,60						0,36	045		(9)	0		
ASTM A131; ABS: BV: DNV:	DH-32		0,90 - 1,60		0,035	0,035			(7)	315 mín.	440 - 590	(3)	-20	31	
LRS; (4)	EH-32												-40		
-,(,)	AH-36	0,18	0,70 - 1,60						0,38 (7)	355 mín.	490 - 620		0		
	DH-36		0,90 - 1,60	0,50				NE					-20	34	
	EH-36		0,90 - 1,60										-40		
	AH-40		0,70 - 1,60						0,40	200	540 050		0		
	DH-40		0,90 - 1,60						(7)	390 mín.	510 - 650		-20	41	
	EH-40		0,90 - 1,60						(-)				-40		

- (1) Requisitos citados apenas como referência, sem todo o detalhamento contido nas normas. Para mais detalhes, consultar nossa equipe de venda:
- (2) Teores máximos, exceto quando especificado de forma diferente.
- (3) Elementos adicionados intencionalmente devem ser determinados e reportados.
- (4) Os requisitos químicos e mecânicos podem variar levemente de norma para norma. Para mais detalhes, consultar a norma aplicável.
- (5) Outros elementos, como Al, Nb, V, Ti, Cu, Cr, Ni, Mo, B, conforme detalhado na norma aplicável.
- (6) CEIIW = C + Mn/6 + (Mo + Cr + V)/5 + (Ni + Cu)/15.
- (7) Os valores máximos especificados variam de acordo com a faixa de espessura.
- (8) Ensaios em corpos de prova com comprimento transversal à direção principal de laminação
- (9) Dependendo da norma, os requisitos de alongamento podem variar com a faixa de espessura e com a base de medida do corpo de prova de tração. Para mais detalhes, consultar a norma aplicável
- (10) Valores especificados para corpos de prova com comprimento paralelo à direção principal de laminação. As normas também exigem garantia de impacto Charpy para corpos de prova com orientação transversal. Para mais detalhes, consultar a norma aplicável.
- (11) Dependendo da norma, os requisitos de impacto Charpy podem variar de acordo com a faixa de espessura. Para mais detalhes, consultar a norma aplicável.

Chapas GrossasAplicações para Torres Eólicas

Aplicações para Torres Eólicas

São aços destinados à fabricação de componentes de torres eólicas onshore e offshore. Possuem boa soldabilidade, tenacidade e resistência à fadiga.

Para atender às demandas específicas deste setor, a Gerdau possui diferentes soluções: utilização do processo de laminação de normalização para graus das classes até 50 kgf/mm²; utilização do processo de laminação termomecânico, com opção de resfriamento acerelado, para graus de aços de mais alta resistência.

		CON	MPOSIÇÃ	O QUÍMICA	A (% en	n massa	a) (1) (2)	(3)	PRO	PRIEDADES (1) (1		VICAS	IMPACTO CHARPY (1) (11)	
ESPECIFICAÇÃO	GRAU		0.				o .	CEIIW	L.E.	L.R.		amento n. (%)	Temperatura	Energia Absorvida
		С	Si	Mn	Р	S	Outros	(6)	(MPa)	(MPa)	BM = 50 mm	BM = 5,65√So	(°C)	mín. (J)
ASTM A36		0,29 (7)		(7)					250 mín.	400 - 550	50 (8)			
	42 T1, 2 e 3(4)	0,21				0.05			290 mín.	415 mín.	50 (8)			
	50 T1, 2 e 3(4)	0,23	0.40 (7)	1,35	0,04	0,05			345 mín.	450 mín.	50 (8)	NE	NE	
ASTM A572	55 T1, 2 e 3(4)	0,26	-, (- /						415 mín.	485 mín.	50 (8)			NE
	60 T1, 2 e 3(4)	0,23		0,60 - 0,90					220 mín.	520 mín.	50 (8)			
	65 T1, 2 e 3(4)	0,26		0,85 - 1,20	0.035	0,040			240 mín.	550 mín.	50 (8)			
	S235 JR					0,035				. 360 - 510 (7)		26 (9)	20	
	S235 J0	0,17 (7)	NE	1,40	0,030	0,030	25	0,35 (7)				22 (9)	0	
	S235 J2				0,025	0,025			(7)			22 (9)	-20	
	S275 JR	0,21 (7)		1,50	0,035	0,035							20	
	S275 J0	0.18			0,030	0,030		0.40 (7)	275 mín.	430 - 580 (7)		19 (9)	0	27
511 40005 O	S275 J2	0,10		,	0,025	0,025	(5)	-, - ()	(7)	, ,			-20	
EN 10025-2	S355 JR	0,24			0,035	0,035							20	
	S355 J0				0,030	0,030							0	
	S355 J2	0,20 (7)	0,55	1,60				0,45 (7)	355 min. (7)	510 - 680 (7)	NE	18 (9)	-20	
	S355 K2				0,025	0,025			(1)				-20	40
	S450 J0	0,20 (7)		1,70	0,030	0,030		0,47 (7)	450 mín. (7)	550 - 720 (7)		17 (9)	0	27
	S275M	0.15		1,60	0,030	0,025		0.24 (7)	, ,	370 - 530 (7)		24 (9)	-20	40
	S275 ML	0,15		1,00	0,025	0,020		0,34 (7)	(7)	370 - 530 (7)		24 (9)	-50	27
	S355 M	0.16	0.55	1.70	0,030	0,025		0.20 (7)	355 mín.	470 - 630 (7)		22 (0)	-20	40
EN 10025-4	S355 ML	0, 10	,16 0,55	1,70		0,020		0,39 (1)	(7)	470 - 030 (7)		22 (9)	-50	27
	S420 M					0,025		0,43 (7)		mín. 540 - 720 (7)		19 (9)	-20	40
	S420 ML	0.18		1,80	0,030	,025 0,020 ,030 0,025 ,025 0,020	,020 ,025		(7)				-50	27
	S460 M S460 ML	0,10	0,65					0,45 (7)				17 (9)	-20 -50	40 27
	3400 IVIL				0,025	0,020			(7)				-50	21

- (1) Requisitos citados apenas como referência, sem todo o detalhamento contido nas normas. Para mais detalhes, consultar nossa equipe de vendas.
- (2) Teores máximos, exceto quando especificado de forma diferente.
- (3) Elementos adicionados intencionalmente devem ser determinados e reportados.
- . (4) Tipo 1: Nb = 0,005-0,05%; Tipo 2: V = 0,01-0,15%; Tipo 3: Nb = 0,005-0,05%, V = 0,01-0,15% e V + Nb = 0,02-0,15%.
- (5) Outros elementos, como Al, Nb, V, Ti, Cr, Ni, Mo, B, N, conforme detalhado na norma.
- (6) CEIIW = C + Mn/6 + (Mo + Cr + V)/5 + (Ni + Cu)/15.
- (7) Varia de acordo com a faixa de espessura. Para mais detalhes, consultar a norma.
- (8) Norma também admite corpo de prova com 200 mm de base de medida. Para mais detalhes, consultar a norma aplicável.
- (9) Norma também admite corpo de prova com 80 mm de base de medida. Para mais detalhes, consultar a norma aplicável.
- (10) Ensaios em corpos de prova com comprimento transversal à direção principal de laminação.
- (11) Ensaios em corpos de prova com comprimento longitudinal à direção principal de laminação.
- NE = Não especificado.

Chapas Grossas Aplicações de Uso Geral

Aplicações de Uso Geral

Para aplicações de uso geral, utilizam-se aços carbono-manganês, muito empregados em partes e componentes de equipamentos variados, obtidos através de laminação convencional.

		COM	MPOSIÇÃO QUÍMICA	A (% em massa) (1)		
ESPECIFICAÇÃO	GRAU	С	Si	Mn	P	S
	1006	0,08 máx.		0,45 máx.		
	1008	0,10 máx.	0,10 máx.	0,50 máx.		
	1010	0,08 - 0,13		0,30 - 0,60		
	1012	0,10 - 0,15	0.45 0.05	0,30 - 0,60		
	1015	0,13 - 0,18	0,15 - 0,35	0,30 - 0,60		
	1016	0,13 - 0,18		0,60 - 0,90	0,030 máx.	
	1018	0,15 - 0,20		0,60 - 0,90		
SAE J403	1019	0,15 - 0,20		0,70 - 1,00		0,035 máx.
	1020	0,18 - 0,23		0,30 - 0,60		
	1021	0,18 - 0,23		0,60 - 0,90		
	1022	0,18 - 0,23		0,70 - 1,00		
	1025	0,22 - 0,28	0,15 - 0,35	0,30 - 0,60		
	1030	0,28 - 0,34		0,60 - 0,90		
	1035	0,32 - 0,38		0,60 - 0,90		
	1040	0,37 - 0,44		0,60 - 0,90		
	1045	0,43 - 0,50		0,60 - 0,90		

⁽¹⁾ Requisitos citados apenas como referência, sem todo o detalhamento contido nas normas. Para mais esclarecimentos, contatar nossa equipe de vendas.

Aplicações para Implementos Rodoviários

São aços de média e alta resistência, com boas características de conformabilidade, soldabilidade e resistência à fadiga. Destinados à fabricação de elementos estruturais, tais como: caçambas e chassis de máquinas agrícolas e de implementos rodoviários.

O desempenho desses aços é baseado em tecnologias similares às utilizadas na fabricação de chapas grossas para o setor de óleo & gás, para o qual a Gerdau conta com moderna tecnologia de resfriamento acelerado, reforçada por um processo de laminação controlada.

		COI	MPOSI		UÍMICA ((% em m	assa)	PROF	PRIEDADES (1) (8 ₎	MECÂNICAS)	DOBRAMENTO A 180° C (1)	
ESPECIFICAÇÃO	GRAU	С	Mn	Si	Р	S	Outros	L.E. (MPa)	L.R. (MPa)	Alongamento mín (%)	Direção	Calço (mm)
										$BM = 5,65\sqrt{So}$		
	LN200	0,15	0,60	0,10				200 - 360	320 - 470	35		0 x Esp.
ABNT NBR 6655	LN240	0,18	1,00	0,20				240 - 380	350 - 510	30		0,5 x Esp.
ABIVI NBIL 0000	LN280	0.20	1,20	0,30				280 - 440	410 - 560	28		1,0 x Esp.
	LN360	-,	1,30			0,025		360 - 520	450 - 620	25		1,5 x Esp.
	LNE200	0.12	0,60					200 - 330	280 - 410	35	Transversal	
	LNE230		0,80					230 - 360	330 - 460	30		
	LNE260	0,15 (4)	1,00	0.35		0,015	(5)	260 - 390	370 - 500			
	LNE280	0,15	,,00					280 - 430	410 - 540			0 x Esp.
	LNE380	0,12	1,10					380 - 530	460 - 600	23		
ABNT NBR 6656	LNE400	0,15	1,40		0,025			400 - 530	520 - 650	23		
	LNE420							420 - 540	520 - 650	22		0 x Esp (7).
	LNE460	0.12	1,60					460 - 580	540 - 680	40		~
	LNE500	0,12	1,50					500 - 620	560 - 700	18		(7)
	LNE550							550 - 670	600 - 760	15		
	LNE600	0,15	1,90					600 - 720	680 - 710	14		1,5 x Esp
	S315 MC		1,30			0.000		315 mín.	390 - 510	24 (6)		0 x Esp.
	S355 MC		1,50			0,020		355 mín.	430 - 550	23 (6)		05 4 500
	S420 MC			0,50				420 mín.	480 - 620	19 (6)		0,5 x Esp.
EN1049-2	S460 MC	0,12	1,60			0.015		460 mín.	520 - 670	17 (6)		40.5
	S500 MC		1,70			0,015		500 mín.	550 - 700			1,0 x Esp.
	S550 MC		1,80					550 mín.	600 - 760	14 (6)		
	S600 MC		1,90					600 mín.	650 - 820	13 (6)		1,5 x Esp

⁽¹⁾ Requisitos citados apenas como referência, sem todo o detalhamento contido nas normas. Para mais detalhes, consultar nossa equipe de vendas.

⁽²⁾ Teores máximos, exceto quando especificado de forma diferente.

⁽³⁾ Elementos adicionados intencionalmente devem ser determinados e reportados.

⁽⁴⁾ Quando adicionado elemento de liga, o teor máximo de C passa a ser 0,12%.

⁽⁴⁾ Quando adicionado elemento de liga, o teor máximo de C passa a ser 0,12%.

(5) Outros elementos, como Al, Nb, V, Ti, Cr, Ni, Mo, B, conforme detalhado na norma.

⁽⁶⁾ Também admite corpo de prova com 80 mm de base de medida. Para mais detalhes, consultar a norma.

⁽⁷⁾ Varia de acordo com a espessura. Para mais detalhes, consultar a norma.

⁽⁸⁾ Corpos de prova com orientação transversal para as normas NBR e longitudinal para a EN.

NE = Não especificado.

Chapas Grossas Aplicações para Vasos de Pressão e Caldeiras

Aplicações para Vasos de Pressão e Caldeiras

São aços estruturais de boa soldabilidade, que apresentam bom desempenho em temperaturas de uso de -60° C até pouco mais de 500° C. Requisitos suplementares podem ser garantidos mediante consulta prévia, tais como: ensaio de impacto a baixa temperatura (-40° C ou inferior), tração a alta temperatura (300° C ou superior), entre outros.

Esses aços, dependendo do grau desejado e dos requisitos suplementares especificados, são produzidos através de laminação convencional ou processo termomecânico de laminação controlada.

		CO	MPOSIÇÃO	QUÍMICA (% en	n massa) (1) (2)	(3)	PROPRIEDADES MECÂNICAS (1) (6) (7)			
ESPECIFICAÇÃO	GRAU	С	Si	Mn	P	S	Outros	L.E. (MPa)	L.R. (MPa)	Alongamento mín. (%) BM = 50 mm	
	Α	0,17						165 mín.	310 - 450	30	
ASTM A285	В	0,22	NE	0,90				185 mín.	345 - 485	28	
	С	0,28						205 mín.	380 - 515	27	
407144000	Α	0,26 (5)	0.15 0.40	0,90 - 1,40 (5)				290 mín. (5)	515 - 655	40	
ASTM A299	В	0,28 (5)	0,13-0,40	0,90 - 1,40 (3)	0,035			325 mín. (5)	550 - 690	19	
ASTM A455	NE	0,33	0,10	0,85 - 1,20				260 mín. (5)	515 - 655 (5)	22	
	60	0,24 (5)		0.00 (5)		0,035	(4)	220 mín.	415 - 550	25	
ASTM A515	65	0,28 (5)	0,15 - 0,40	0,90 (5)				240 mín.	450 - 585	23	
	70	0,31 (5)		1,20 (5)				260 mín.	485 - 620	21	
	55	0,18 (5)						205 mín.	380 - 515	27	
ASTM A516	60	0,21 (5)	0,15 - 0,40	0,60 - 0,90 (5)				220 mín.	415 - 550	25	
	65	0,24 (5)		0,85 - 1,20 (5)				240 mín.	450 - 585	23	
	70	0,27 (5)		` _				260 mín.	485 - 620	21	
ASTM A612	NE	0,25	0,15 - 0,50	1,00 - 1,50		0,025		345 mín.	570 - 725 (5)	22	

⁽¹⁾ Requisitos citados apenas como referência, sem todo o detalhamento contido nas normas. Para mais detalhes, consultar nossa equipe de vendas.

⁽²⁾ Teores máximos, exceto quando especificado de forma diferente.

⁽³⁾ Elementos adicionados intencionalmente devem ser determinados e reportados.

⁽⁴⁾ Outros elementos, como Al, Nb, V, Ti, Cr, Cu, Ni, Mo, B, N, conforme detalhado na norma.

⁽⁵⁾ Varia de acordo com a faixa de espessura. Para mais detalhes, consultar a norma.

⁽⁶⁾ Norma também admite corpo de prova com 200 mm de base de medida. Para mais detalhes, consultar a norma aplicável.

⁽⁷⁾ Ensaios em corpos de prova com comprimento longitudinal à direção principal de laminação.

NE = Não especificado.

Chapas Grossas Aplicações de Uso Estrutural

Para aplicações de uso estrutural, utilizam-se aços carbono-manganês, microligados, com boas características de soldabilidade e conformabilidade. Esses aços podem ser empregados em elementos da construção sujeitos a carregamento. Os principais requisitos para aços destinados à aplicação estrutural são: elevada tensão de escoamento, alta tenacidade, boa soldabilidade, homogeneidade microestrutural, susceptibilidade de corte por chama sem endurecimento e boa trabalhabilidade em operações, tais como: corte, furação e dobramento, sem que se originem fissuras ou outros defeitos. Em adição, elevada resistência à corrosão atmosférica pode ser obtida pelo uso dos aços patináveis. Aços estruturais, dependendo do grau desejado, são produzidos através de laminação convencional ou processo termomecânico de laminação controlada.

			COMPOSI	ÇÃOQUÍMIC	A Mer	n mass	a) (1) (2)			PROPRI	EDADES N	MECÂNICAS (1)	(10)		ІМРАСТО СНА	RPY (1) (11)
ESPECIFICAÇÃO	GRAU	C Si	Si	Mn	P	S	Outros	Cııw máx. (4)	L.E. (MPa)	L.R.	L.E./L.R.		nto mín. (%)	DOBRAMENTO A 180° C (1) (10)	Temperatura	Energia (J)
									(IVIFa)	(IVIFa)		BM = 50 mm	BM = 5,65√So	Calço (mm)	(3)	(0)
ABNTNBR 5000	G300 G345 G415 G450	0,22 0,23 0,26	0,40 0,45 0.50	1,60 1,70	0,040	0,050	(5)	NE	300 mín. 345 mín. 415 mín. 450 mín.	415 mín. 450 mín. 520 mín. 550 mín.	NE	22 (9) 20 (9) 16 (9) 14 (9)		2,0 x Esp. 3,0 x Esp. 3,5 x Esp. 4,0 x Esp.	NE	NE
	GRC300	0,20	0,00	1,10					300 min.	400 min.		21 (8)		2,0 x Esp.		
ABNTNBR 5008	GRC350 GRC350A	0,25	0,10 - 1,50	1,50	0,050	0.000	(5) (6)	0,55	350 mín.	490 mín. 500 mín.	0,85	19 (8)		3,0 x Esp.	0	27
ABNTNBR 6648	CG210 CG250 CG280	0,20 0,25	0,40 0,50	1,00 1,20 1,50	0,035	0,030			210 min. 250 min. 280 min.	340 - 490 400 - 550 450 - 600	0,93	27 (8) 23 (8) 22 (8)		1,0 x Esp. 2,0 x Esp. 2,5 x Esp.		
ASTMA36	NE	0,29 (7)		(7)	0,040	0,050			250 mín.	400 - 550		21 (8)	NE	, , ,		
ASTIMA283	C D	0,24 0,27	0,15 - 0,40 (7)	0,90	0,035	0,040			205 mín. 230 mín.	380 - 515 415 - 550		25 (8) 23 (8)	26 (7) (9) 22 (7) (9)			
ASTMA572	42 T1, 2 e 3 (3) 50 T1, 2 e 3 (3) 55 T1, 2 e 3 (3) 60 T1, 2 e 3 (3) 65 T1, 2 e 3 (3)	0,21 0,23 0,25 0,26 0,23	NE	0,50 - 1,35 (7)	0,040	0,050		NE 55 (6) 0,35 (7)	290 mín. 345 mín. 220 mín. 240 mín. 290 mín.	415 mín. 450 mín. 485 mín. 520 mín. 550 mín.		24 (8) 21 (8) 20 (8) 18 (8) 17 (8)			NE	NE
ASTMA588	A B K	0,19 0,20 0.17		0,80 - 1,25 0,75 - 1,35 0,50 - 1,20	0,040	0,050	0 (5)(6)		345 mín.	485 mín.		21 (9)				
	S235 JR S235 J0 S235 J2	0,17 (7)	NE	1,40	0,0	035 030 025			235 mín. (7)	360 - 510 (7)					20 0 -20	
EN 10025-2	S275 JR S275 J0 S275 J2	0,21 (7)	NE	1,50	0,0	035 030 025		0,40 (7)	275 mín. (7)	430 - 580 (7)	NE		19 (7)(9)	NE	20 0 -20	27
	S355 JR	0,24				035									20	
	S355 J0 S355 J2 S355 K2	0,20 (7)		1,60	0,0	030 025 025		0,45 (7)	355 mín. (7)	510 - 680 (7)		18 (7) (9) NE		0 -20 -20	40	
	S275ML S275ML	0,15	0,55		0,035	0,030 0,025	(5)	0,34 (7)	275 mín. (7)	370 - 530 (7)			24		-20 -50	40 27
EN 10025-4	S355 M S355 ML	0,16		1,70		0,030 0,025		0,39 (7)	355 mín. (7)	470 - 630 (7)		22		-20 -50	40 27	
214 10025-4	S420 M S420 ML	0.18		1,80		0,025		0,43 (7)	420 mín. (7)	(7)			19		-50 -20 -50	40 27
	S460 M S460 ML	5,.5	0,65	1,00		0,030 0,025		0,45 (7)	460 mín. (7)	(7)			17		-20 -50	40 27
JIS G 3101	SS 400 SS 490	NE	NE	NE		050		NE	245 min.(7) 285 min.(7)	490 - 610		17 (7) (8) 15 (7) (8)	NE	3,0 x Esp. 4,0 x Esp.	NE	NE
SS 540	0,30		1,60	0,0	040			400 mín.(7)	540 min.		13 (7) (8)					

- (1) Requisitos citados apenas como referência, sem todo o detalhamento contido nas normas. Para mais esclarecimentos, contatar nossa equipe de vendas.
- (2) Teores máximos, exceto quando indicado de modo diferente
- (3) Tipo 1: Nb = 0,005-0,05%; Tipo 2: V = 0,01-0,15%; Tipo 3: Nb = 0,005-0,05%, V = 0,01-0,15% e V + Nb = 0,02-0,15%. (4) CEIIW = %C + %Mn/6 + (%Cr + %Mo + %V)/5 + (%Ni + %Cu)/15.
- (5) Outros elementos químicos podem ser adicionados, de acordo com as normas. Para mais detalhes, consultar a norma aplicável.
- (6) Aço patinável. O índice de corrosão (ICORR), definido segundo ASTM G101, deve ser ≥ 6,00.
- (7) Varia de acordo com a faixa de espessura. Para mais detalhes, consultar a norma. (8) Norma também admite corpo de prova com 200 mm de base de medida. Para mais detalhes, consultar a norma aplicável. (9) Norma também admite corpo de prova com 80 mm de base de medida. Para mais detalhes, consultar a norma aplicável
- (10) Ensaios em corpos de prova com comprimento transversal à direção principal de laminação.
- (11) Ensaios em corpos de prova com comprimento paralelo à direção principal de laminação.
- NE = Não especificado.

- SUDESTE SÃO PAULO | Tel.: (11) 3094-6600 / Fax: (11) 3094-6303 | e-mail: gerdaudistribuicao.sp@gerdau.com.br RIO DE JANEIRO | Tel.: (21) 2414-6700 | e-mail: atendimentogerdau.rj@gerdau.com.br

- MINAS GERAIS | Tel.: (31) 3369-4600 / Fax: (31) 3369-4647 | e-mail: atendimentogerdau.mg@gerdau.com.br

 CENTRO-OESTE | Tel.: (62) 4005-6000 / Fax: (62) 4005-6002 | e-mail: gerdaudistribuicao.co@gerdau.com.br

 NORTE / NORDESTE CEARÁ | Tel.: (85) 3499-7255 | e-mail: vendas.regional@gerdau.com.br

 PERNAMBUCO | Tel.: (81) 3452-7621 / Fax: (81) 3301-7635 | e-mail: gerdauvendasnordeste@gerdau.com.br

 SUL RIO GRANDE DO SUL | Tel.: (51) 3450-7855 / Fax: (51) 3323-2800 | e-mail: atendimentogerdau.sul@gerdau.com.br

 PARANÁ | Tel.: (41) 3239-6004 | e-mail: atendimentogerdau.sul@gerdau.com.br